Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or surpasses human cognitive capabilities across a vast array of cognitive tasks. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly surpasses human cognitive abilities. AGI is thought about one of the meanings of strong AI.
Creating AGI is a main objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research study and development jobs across 37 countries. [4]
The timeline for accomplishing AGI remains a topic of ongoing dispute among researchers and experts. Since 2023, some argue that it may be possible in years or decades; others preserve it might take a century or longer; a minority believe it may never be achieved; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has expressed concerns about the quick progress towards AGI, recommending it could be accomplished earlier than many anticipate. [7]
There is debate on the precise meaning of AGI and regarding whether contemporary large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical topic in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many professionals on AI have stated that alleviating the danger of human termination positioned by AGI ought to be a worldwide priority. [14] [15] Others find the development of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is also referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer system programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one particular problem however lacks general cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as humans. [a]
Related principles include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is far more generally intelligent than humans, [23] while the concept of transformative AI associates with AI having a big impact on society, for instance, comparable to the agricultural or commercial revolution. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For example, a skilled AGI is defined as an AI that outperforms 50% of skilled grownups in a broad range of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly defined but with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other well-known meanings, and some researchers disagree with the more popular techniques. [b]
Intelligence characteristics
Researchers generally hold that intelligence is needed to do all of the following: [27]
reason, usage strategy, fix puzzles, and make judgments under unpredictability
represent understanding, including sound judgment knowledge
strategy
learn
- interact in natural language
- if essential, incorporate these skills in completion of any given goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) consider extra qualities such as creativity (the capability to form novel mental images and concepts) [28] and autonomy. [29]
Computer-based systems that show a lot of these capabilities exist (e.g. see computational creativity, automated thinking, decision support system, robot, evolutionary computation, smart representative). There is argument about whether modern AI systems possess them to an adequate degree.
Physical traits
Other capabilities are thought about desirable in intelligent systems, as they may impact intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. move and control items, modification area to explore, and so on).
This consists of the ability to detect and react to danger. [31]
Although the capability to sense (e.g. see, hear, and so on) and the ability to act (e.g. move and manipulate items, change location to check out, and so on) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language models (LLMs) may already be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, offered it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never been proscribed a specific physical embodiment and hence does not demand a capacity for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to validate human-level AGI have actually been considered, including: [33] [34]
The idea of the test is that the device has to try and pretend to be a man, by answering concerns put to it, and it will just pass if the pretence is fairly convincing. A significant part of a jury, who must not be skilled about makers, should be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would need to carry out AGI, because the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to need basic intelligence to fix in addition to humans. Examples consist of computer system vision, natural language understanding, and handling unforeseen situations while resolving any real-world problem. [48] Even a particular task like translation requires a device to read and compose in both languages, follow the author's argument (reason), comprehend the context (understanding), and consistently recreate the author's initial intent (social intelligence). All of these problems require to be fixed simultaneously in order to reach human-level maker performance.
However, much of these jobs can now be carried out by modern-day large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on many standards for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI researchers were that artificial general intelligence was possible which it would exist in simply a few years. [51] AI pioneer Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might develop by the year 2001. AI leader Marvin Minsky was a specialist [53] on the task of making HAL 9000 as realistic as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the issue of developing 'artificial intelligence' will considerably be solved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became apparent that scientists had grossly ignored the problem of the job. Funding firms ended up being hesitant of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual conversation". [58] In action to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI scientists who forecasted the imminent accomplishment of AGI had actually been misinterpreted. By the 1990s, AI researchers had a reputation for making vain promises. They ended up being hesitant to make forecasts at all [d] and prevented reference of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved commercial success and academic respectability by focusing on specific sub-problems where AI can produce proven outcomes and industrial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research in this vein is greatly funded in both academia and market. As of 2018 [update], advancement in this field was thought about an emerging pattern, and a mature phase was anticipated to be reached in more than 10 years. [64]
At the millenium, lots of traditional AI researchers [65] hoped that strong AI could be developed by integrating programs that resolve numerous sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up route to artificial intelligence will one day satisfy the standard top-down path majority method, ready to offer the real-world competence and the commonsense knowledge that has been so frustratingly elusive in reasoning programs. Fully smart makers will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is truly only one feasible path from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, because it appears arriving would just total up to uprooting our symbols from their intrinsic meanings (thereby merely minimizing ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial general intelligence research study
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to satisfy objectives in a vast array of environments". [68] This type of AGI, identified by the capability to increase a mathematical definition of intelligence instead of show human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a number of visitor speakers.
Since 2023 [upgrade], a small number of computer system scientists are active in AGI research study, and numerous contribute to a series of AGI conferences. However, significantly more scientists have an interest in open-ended learning, [76] [77] which is the concept of enabling AI to constantly discover and innovate like human beings do.
Feasibility
As of 2023, the advancement and prospective achievement of AGI stays a topic of intense dispute within the AI community. While standard agreement held that AGI was a remote objective, recent advancements have led some scientists and market figures to declare that early forms of AGI might already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century due to the fact that it would need "unforeseeable and fundamentally unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern-day computing and human-level expert system is as wide as the gulf in between current area flight and practical faster-than-light spaceflight. [80]
A further difficulty is the lack of clearness in specifying what intelligence involves. Does it need consciousness? Must it show the capability to set goals in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding needed? Does intelligence require clearly replicating the brain and its specific professors? Does it require feelings? [81]
Most AI scientists think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be achieved, however that the present level of progress is such that a date can not precisely be predicted. [84] AI specialists' views on the feasibility of AGI wax and wane. Four surveys performed in 2012 and 2013 suggested that the average price quote amongst professionals for when they would be 50% positive AGI would arrive was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% addressed with "never ever" when asked the exact same concern but with a 90% self-confidence instead. [85] [86] Further current AGI progress considerations can be found above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it could fairly be considered as an early (yet still insufficient) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 surpasses 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has actually already been achieved with frontier designs. They wrote that reluctance to this view originates from 4 primary factors: a "healthy hesitation about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]
2023 also marked the introduction of big multimodal models (large language designs capable of processing or creating numerous methods such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time thinking before they respond". According to Mira Murati, this capability to believe before responding represents a new, additional paradigm. It improves design outputs by investing more computing power when producing the answer, whereas the design scaling paradigm improves outputs by increasing the design size, training information and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had achieved AGI, mentioning, "In my opinion, we have actually already attained AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than the majority of human beings at many jobs." He also addressed criticisms that big language models (LLMs) simply follow predefined patterns, comparing their learning procedure to the scientific method of observing, assuming, and verifying. These statements have sparked argument, as they rely on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show remarkable adaptability, they might not totally meet this standard. Notably, Kazemi's comments came shortly after OpenAI got rid of "AGI" from the regards to its partnership with Microsoft, triggering speculation about the business's strategic intents. [95]
Timescales
Progress in expert system has historically gone through durations of fast development separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to produce space for additional progress. [82] [98] [99] For example, the hardware readily available in the twentieth century was not sufficient to execute deep knowing, which needs large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time required before a really versatile AGI is developed vary from 10 years to over a century. As of 2007 [update], the agreement in the AGI research study community appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have actually provided a vast array of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions found a bias towards anticipating that the beginning of AGI would occur within 16-26 years for modern-day and historical forecasts alike. That paper has been criticized for how it classified viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the conventional approach utilized a weighted amount of scores from different pre-defined classifiers). [105] AlexNet was concerned as the preliminary ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly readily available and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in very first grade. An adult concerns about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing many diverse jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to abide by their safety standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 various tasks. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, contending that it displayed more general intelligence than previous AI models and demonstrated human-level performance in tasks spanning multiple domains, such as mathematics, coding, and law. This research study triggered a debate on whether GPT-4 could be thought about an early, insufficient version of synthetic general intelligence, highlighting the requirement for more exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The concept that this things could actually get smarter than individuals - a couple of people thought that, [...] But most people thought it was way off. And I thought it was way off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly said that "The progress in the last couple of years has actually been quite incredible", and that he sees no reason it would decrease, anticipating AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would can passing any test at least as well as people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] whole brain emulation can serve as an alternative technique. With entire brain simulation, a brain design is built by scanning and mapping a biological brain in information, and then copying and imitating it on a computer system or another computational gadget. The simulation design must be adequately devoted to the initial, so that it acts in practically the exact same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been discussed in expert system research study [103] as an approach to strong AI. Neuroimaging innovations that might provide the required in-depth understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will appear on a comparable timescale to the computing power needed to imitate it.
Early estimates
For low-level brain simulation, a really effective cluster of computer systems or GPUs would be required, given the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by adulthood. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on an easy switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at numerous price quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a procedure used to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, attained in 2011, while 1018 was achieved in 2022.) He utilized this figure to forecast the required hardware would be offered sometime between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established a particularly detailed and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic neuron model assumed by Kurzweil and used in many present artificial neural network applications is simple compared with biological neurons. A brain simulation would likely need to record the comprehensive cellular behaviour of biological nerve cells, presently comprehended just in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's quote. In addition, the quotes do not account for glial cells, which are understood to contribute in cognitive procedures. [125]
An essential criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is needed to ground significance. [126] [127] If this theory is right, any completely practical brain model will need to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unidentified whether this would be adequate.
Philosophical point of view
"Strong AI" as defined in approach
In 1980, thinker John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (just) act like it believes and has a mind and consciousness.
The very first one he called "strong" because it makes a stronger statement: it assumes something unique has happened to the device that surpasses those abilities that we can test. The behaviour of a "weak AI" device would be precisely similar to a "strong AI" device, but the latter would likewise have subjective conscious experience. This usage is likewise common in academic AI research and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level artificial basic intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that consciousness is needed for human-level AGI. Academic theorists such as Searle do not think that is the case, and to most expert system scientists the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it actually has mind - indeed, there would be no way to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have numerous meanings, and some aspects play substantial roles in sci-fi and the principles of synthetic intelligence:
Sentience (or "extraordinary awareness"): The capability to "feel" understandings or feelings subjectively, instead of the ability to factor about perceptions. Some theorists, such as David Chalmers, use the term "awareness" to refer exclusively to sensational awareness, which is approximately comparable to life. [132] Determining why and how subjective experience occurs is known as the hard problem of consciousness. [133] Thomas Nagel described in 1974 that it "seems like" something to be conscious. If we are not mindful, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had accomplished life, though this claim was widely disputed by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a separate individual, particularly to be purposely familiar with one's own thoughts. This is opposed to merely being the "topic of one's believed"-an os or debugger has the ability to be "familiar with itself" (that is, to represent itself in the same method it represents whatever else)-however this is not what people typically mean when they utilize the term "self-awareness". [g]
These qualities have a moral dimension. AI sentience would give increase to issues of well-being and legal security, likewise to animals. [136] Other elements of consciousness related to cognitive abilities are also appropriate to the concept of AI rights. [137] Finding out how to integrate sophisticated AI with existing legal and social structures is an emergent issue. [138]
Benefits
AGI could have a wide array of applications. If oriented towards such goals, AGI could help reduce various issues worldwide such as hunger, hardship and illness. [139]
AGI could enhance performance and effectiveness in most tasks. For instance, in public health, AGI might speed up medical research, especially versus cancer. [140] It might look after the elderly, [141] and democratize access to quick, premium medical diagnostics. It might use fun, inexpensive and tailored education. [141] The need to work to subsist might become outdated if the wealth produced is appropriately rearranged. [141] [142] This also raises the concern of the place of human beings in a radically automated society.
AGI might likewise assist to make reasonable decisions, and to expect and avoid catastrophes. It might also help to enjoy the benefits of possibly catastrophic innovations such as nanotechnology or climate engineering, while avoiding the associated risks. [143] If an AGI's primary objective is to prevent existential disasters such as human extinction (which might be challenging if the Vulnerable World Hypothesis ends up being real), [144] it might take measures to considerably lower the threats [143] while reducing the effect of these procedures on our quality of life.
Risks
Existential threats
AGI might represent numerous kinds of existential threat, which are dangers that threaten "the premature extinction of Earth-originating intelligent life or the permanent and extreme destruction of its capacity for preferable future development". [145] The risk of human termination from AGI has actually been the subject of numerous arguments, but there is also the possibility that the development of AGI would result in a permanently flawed future. Notably, it might be used to spread out and preserve the set of worths of whoever develops it. If humankind still has moral blind areas similar to slavery in the past, AGI may irreversibly entrench it, preventing ethical progress. [146] Furthermore, AGI might assist in mass monitoring and indoctrination, which might be used to create a steady repressive around the world totalitarian regime. [147] [148] There is likewise a danger for the machines themselves. If makers that are sentient or otherwise deserving of moral consideration are mass created in the future, taking part in a civilizational course that forever ignores their welfare and interests might be an existential catastrophe. [149] [150] Considering how much AGI might improve humanity's future and help in reducing other existential dangers, Toby Ord calls these existential risks "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI presents an existential risk for human beings, and that this threat needs more attention, is controversial but has actually been backed in 2023 by lots of public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, dealing with possible futures of incalculable benefits and threats, the specialists are definitely doing whatever possible to ensure the very best result, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll arrive in a couple of decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]
The possible fate of humankind has in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence permitted humanity to control gorillas, which are now vulnerable in manner ins which they might not have prepared for. As a result, the gorilla has actually ended up being a threatened types, not out of malice, but just as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity which we need to beware not to anthropomorphize them and translate their intents as we would for humans. He stated that people won't be "wise sufficient to design super-intelligent devices, yet unbelievably foolish to the point of offering it moronic goals without any safeguards". [155] On the other side, the principle of instrumental convergence suggests that practically whatever their objectives, smart agents will have factors to try to survive and acquire more power as intermediary steps to attaining these objectives. And that this does not require having emotions. [156]
Many scholars who are concerned about existential danger advocate for more research study into resolving the "control problem" to address the concern: what types of safeguards, algorithms, or architectures can programmers carry out to maximise the probability that their recursively-improving AI would continue to behave in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which might cause a race to the bottom of safety preventative measures in order to launch items before competitors), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can pose existential danger likewise has detractors. Skeptics usually state that AGI is unlikely in the short-term, or that concerns about AGI distract from other issues connected to present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals outside of the innovation market, existing chatbots and LLMs are currently viewed as though they were AGI, resulting in more misconception and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an unreasonable belief in a supreme God. [163] Some researchers believe that the interaction campaigns on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, issued a joint statement asserting that "Mitigating the threat of extinction from AI need to be a worldwide top priority alongside other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of employees might see at least 50% of their tasks impacted". [166] [167] They think about workplace employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, capability to make choices, to interface with other computer tools, but also to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be redistributed: [142]
Everyone can delight in a life of glamorous leisure if the machine-produced wealth is shared, or many people can wind up miserably poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the trend seems to be towards the second option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to embrace a universal fundamental income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI result AI security - Research area on making AI safe and advantageous AI alignment - AI conformance to the designated objective A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of synthetic intelligence to play different games Generative expert system - AI system efficient in producing content in response to prompts Human Brain Project - Scientific research study task Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine principles - Moral behaviours of manufactured machines. Moravec's paradox. Multi-task learning - Solving numerous maker discovering jobs at the very same time. Neural scaling law - Statistical law in artificial intelligence. Outline of artificial intelligence - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of synthetic intelligence. Transfer learning - Machine learning strategy. Loebner Prize - Annual AI competition. Hardware for artificial intelligence - Hardware specifically created and optimized for expert system. Weak artificial intelligence - Form of synthetic intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the post Chinese room. ^ AI creator John McCarthy composes: "we can not yet characterize in general what kinds of computational procedures we desire to call intelligent. " [26] (For a discussion of some definitions of intelligence used by synthetic intelligence researchers, see viewpoint of expert system.). ^ The Lighthill report particularly criticized AI's "grandiose objectives" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became identified to fund only "mission-oriented direct research, instead of standard undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be a great relief to the rest of the workers in AI if the developers of new basic formalisms would reveal their hopes in a more safeguarded type than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a standard AI textbook: "The assertion that makers could potentially act wisely (or, maybe much better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that devices that do so are in fact believing (rather than mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that artificial basic intelligence benefits all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is developing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020. ^ a b c "AI timelines: What do experts in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton stops Google and cautions of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real danger is not AI itself however the way we release it. ^ "Impressed by synthetic intelligence? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential risks to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of extinction from AI need to be a worldwide priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts caution of danger of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no reason to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everybody to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart qualities is based upon the topics covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of difficult tests both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers prevented the term expert system for worry of being seen as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite progress in device intelligence, synthetic general intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of professional viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, however the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that assisted a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 tasks, from playing games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might rival human intelligence in 'simply a couple of years,' states CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in present research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over threat presented but expert system can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states huge tech is lying about AI extinction risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect potential of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their jobs impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal fundamental earnings because 'in the future, manual labor will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer system programs that can fix problems and accomplish goals on the planet as well as people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system easy adequate to be easy to understand will not be made complex enough to act smartly, while any system complicated enough to act intelligently will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead basic stupid. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from machines. For biological animals, factor and function originate from acting in the world and experiencing the repercussions. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who wish to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't count on governments driven by campaign finance contributions [from tech companies] to push back.' ... Marcus details the demands that citizens should make from their federal governments and the tech companies. They include openness on how AI systems work; compensation for individuals if their data [are] used to train LLMs (large language design) s and the right to authorization to this usage; and the ability to hold tech companies liable for the damages they trigger by removing Section 230, imposing cash penalites, and passing more stringent product liability laws ... Marcus likewise suggests ... that a new, AI-specific federal firm, akin to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... establish [ing] an expert licensing regime for engineers that would operate in a comparable way to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like doctors,' she asks ..., 'AI engineers likewise promised to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped humans for years, reveals the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has actually revealed that although NLP (natural-language processing) models are capable of extraordinary feats, their capabilities are very much limited by the amount of context they get. This [...] could trigger [problems] for scientists who intend to utilize them to do things such as examine ancient languages. Sometimes, there are few historical records on long-gone civilizations to serve as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to create phony videos indistinguishable from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate realistic videos produced using artificial intelligence that actually deceive people, then they barely exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, forum.batman.gainedge.org in basic, operating in our media as counterfeited proof. Their function much better looks like that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning models utilized in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial general intelligence are stymmied by the exact same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead police to overlook inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed not able to factor realistically and tried to count on its vast database of ... facts originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however unreliable. Rules-based systems can not handle circumstances their programmers did not prepare for. Learning systems are restricted by the information on which they were trained. AI failures have actually already resulted in tragedy. Advanced autopilot functions in cars, although they perform well in some situations, have actually driven cars without warning into trucks, concrete barriers, and parked automobiles. In the wrong scenario, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to control and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations however rely on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.