Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or goes beyond human cognitive abilities across a large range of cognitive jobs. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, trade-britanica.trade describes AGI that significantly goes beyond human cognitive abilities. AGI is thought about among the definitions of strong AI.
Creating AGI is a main goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and advancement projects across 37 nations. [4]
The timeline for accomplishing AGI stays a subject of ongoing debate amongst scientists and professionals. As of 2023, some argue that it may be possible in years or decades; others preserve it might take a century or longer; a minority believe it might never ever be accomplished; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has actually revealed issues about the rapid progress towards AGI, suggesting it might be accomplished sooner than lots of expect. [7]
There is argument on the specific meaning of AGI and concerning whether contemporary large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have specified that mitigating the danger of human extinction postured by AGI needs to be a worldwide concern. [14] [15] Others find the advancement of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer system programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) has the ability to fix one specific problem but does not have general cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as people. [a]
Related principles consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is much more generally intelligent than human beings, [23] while the notion of transformative AI relates to AI having a large effect on society, for example, similar to the agricultural or commercial transformation. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For instance, a competent AGI is specified as an AI that outshines 50% of knowledgeable grownups in a large range of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified but with a threshold of 100%. They think about large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular techniques. [b]
Intelligence qualities
Researchers generally hold that intelligence is required to do all of the following: [27]
reason, use strategy, fix puzzles, and make judgments under unpredictability
represent understanding, consisting of good sense understanding
plan
discover
- interact in natural language
- if necessary, incorporate these skills in conclusion of any offered goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about extra qualities such as creativity (the capability to form unique mental images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit a number of these abilities exist (e.g. see computational creativity, automated thinking, decision assistance system, robotic, evolutionary computation, smart representative). There is debate about whether modern-day AI systems possess them to an adequate degree.
Physical characteristics
Other capabilities are considered preferable in smart systems, ai-db.science as they may impact intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the ability to act (e.g. relocation and manipulate items, change place to explore, etc).
This consists of the capability to detect and react to hazard. [31]
Although the capability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and control items, modification location to check out, etc) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) may already be or end up being AGI. Even from a less optimistic perspective on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system is enough, offered it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has never ever been proscribed a specific physical embodiment and thus does not require a capacity for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to verify human-level AGI have actually been considered, including: [33] [34]
The idea of the test is that the device needs to attempt and pretend to be a male, by answering questions put to it, and it will only pass if the pretence is fairly convincing. A substantial portion of a jury, who must not be skilled about machines, need to be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would need to carry out AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to require general intelligence to solve in addition to humans. Examples consist of computer system vision, natural language understanding, and handling unforeseen circumstances while solving any real-world problem. [48] Even a specific job like translation needs a machine to check out and compose in both languages, follow the author's argument (factor), comprehend the context (understanding), and consistently replicate the author's initial intent (social intelligence). All of these issues require to be solved at the same time in order to reach human-level maker efficiency.
However, many of these tasks can now be carried out by modern-day large language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of standards for checking out comprehension and visual thinking. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The very first generation of AI scientists were convinced that synthetic basic intelligence was possible and that it would exist in simply a few decades. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might produce by the year 2001. AI leader Marvin Minsky was a consultant [53] on the task of making HAL 9000 as sensible as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the problem of developing 'artificial intelligence' will significantly be solved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being apparent that scientists had grossly underestimated the trouble of the task. Funding companies became doubtful of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "bring on a table talk". [58] In action to this and the success of expert systems, both market and government pumped money into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever satisfied. [60] For the 2nd time in twenty years, AI researchers who anticipated the impending achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a reputation for making vain guarantees. They ended up being reluctant to make predictions at all [d] and prevented mention of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI accomplished commercial success and scholastic respectability by concentrating on specific sub-problems where AI can produce verifiable outcomes and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research in this vein is greatly funded in both academia and market. As of 2018 [upgrade], advancement in this field was considered an emerging pattern, and a fully grown phase was expected to be reached in more than ten years. [64]
At the turn of the century, lots of traditional AI researchers [65] hoped that strong AI might be developed by combining programs that solve numerous sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to artificial intelligence will one day satisfy the conventional top-down path more than half way, all set to supply the real-world proficiency and the commonsense understanding that has actually been so frustratingly elusive in thinking programs. Fully intelligent machines will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is truly just one practical route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never ever be reached by this route (or vice versa) - nor is it clear why we must even try to reach such a level, considering that it appears getting there would just amount to uprooting our signs from their intrinsic significances (thereby simply minimizing ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic basic intelligence research study
The term "artificial general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to please goals in a vast array of environments". [68] This type of AGI, defined by the ability to maximise a mathematical definition of intelligence instead of exhibit human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and including a number of visitor lecturers.
As of 2023 [update], a little number of computer system scientists are active in AGI research study, and numerous add to a series of AGI conferences. However, significantly more researchers are interested in open-ended learning, [76] [77] which is the idea of enabling AI to continually learn and innovate like human beings do.
Feasibility
Since 2023, the advancement and potential accomplishment of AGI stays a topic of extreme dispute within the AI community. While traditional consensus held that AGI was a distant goal, recent developments have actually led some researchers and market figures to claim that early kinds of AGI might already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a male can do". This prediction failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and essentially unpredictable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level synthetic intelligence is as broad as the gulf between present area flight and useful faster-than-light spaceflight. [80]
A further challenge is the lack of clarity in defining what intelligence entails. Does it require awareness? Must it display the capability to set objectives along with pursue them? Is it simply a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding needed? Does intelligence require explicitly replicating the brain and its particular professors? Does it require emotions? [81]
Most AI researchers believe strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that today level of progress is such that a date can not accurately be forecasted. [84] AI experts' views on the feasibility of AGI wax and subside. Four surveys conducted in 2012 and 2013 recommended that the average price quote among professionals for when they would be 50% confident AGI would show up was 2040 to 2050, depending on the poll, with the mean being 2081. Of the professionals, 16.5% addressed with "never" when asked the exact same concern but with a 90% self-confidence instead. [85] [86] Further present AGI development considerations can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists released an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we think that it might reasonably be seen as an early (yet still incomplete) variation of an artificial general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has currently been attained with frontier models. They composed that unwillingness to this view originates from 4 main factors: a "healthy hesitation about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 likewise marked the development of large multimodal models (big language designs capable of processing or creating several techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time believing before they respond". According to Mira Murati, this ability to think before responding represents a new, extra paradigm. It enhances model outputs by investing more computing power when creating the response, whereas the design scaling paradigm enhances outputs by increasing the design size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the company had attained AGI, specifying, "In my opinion, we have already attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than most human beings at a lot of tasks." He likewise attended to criticisms that big language models (LLMs) merely follow predefined patterns, comparing their learning procedure to the clinical method of observing, hypothesizing, and validating. These statements have actually sparked argument, as they count on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show remarkable flexibility, they may not totally fulfill this standard. Notably, Kazemi's comments came shortly after OpenAI removed "AGI" from the regards to its partnership with Microsoft, prompting speculation about the business's strategic intentions. [95]
Timescales
Progress in expert system has actually historically gone through durations of rapid progress separated by periods when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create space for further development. [82] [98] [99] For example, the hardware available in the twentieth century was not enough to execute deep learning, which needs big numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that estimates of the time required before a truly versatile AGI is built vary from ten years to over a century. Since 2007 [update], the agreement in the AGI research community seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI researchers have offered a large variety of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints discovered a bias towards anticipating that the start of AGI would take place within 16-26 years for modern-day and historical predictions alike. That paper has been slammed for how it categorized opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the standard approach utilized a weighted sum of scores from different pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the existing deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in first grade. A grownup pertains to about 100 typically. Similar tests were carried out in 2014, with the IQ rating reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of carrying out many varied tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to adhere to their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI designs and demonstrated human-level performance in tasks covering numerous domains, such as mathematics, coding, and law. This research study stimulated a debate on whether GPT-4 might be considered an early, insufficient variation of artificial basic intelligence, highlighting the need for further exploration and examination of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The idea that this things might actually get smarter than individuals - a couple of individuals believed that, [...] But many people thought it was way off. And I believed it was method off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly stated that "The progress in the last couple of years has actually been pretty amazing", which he sees no reason that it would slow down, expecting AGI within a decade and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would be capable of passing any test at least in addition to people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI worker, estimated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is thought about the most promising path to AGI, [116] [117] entire brain emulation can work as an alternative method. With whole brain simulation, a brain design is constructed by scanning and mapping a biological brain in detail, and after that copying and replicating it on a computer system or another computational device. The simulation model need to be sufficiently faithful to the initial, so that it behaves in virtually the same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research purposes. It has been gone over in synthetic intelligence research [103] as a method to strong AI. Neuroimaging technologies that could provide the needed comprehensive understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will appear on a comparable timescale to the computing power required to emulate it.
Early estimates
For low-level brain simulation, a very effective cluster of computers or GPUs would be needed, offered the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a basic switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various price quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a procedure utilized to rate current supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He used this figure to predict the required hardware would be available at some point between 2015 and 2025, if the exponential growth in computer system power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed a particularly comprehensive and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial neuron design assumed by Kurzweil and used in lots of present synthetic neural network executions is simple compared to biological nerve cells. A brain simulation would likely need to catch the detailed cellular behaviour of biological neurons, currently understood just in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would need computational powers a number of orders of magnitude larger than Kurzweil's quote. In addition, the quotes do not represent glial cells, which are understood to play a role in cognitive processes. [125]
A basic criticism of the simulated brain method stems from embodied cognition theory which asserts that human personification is an important element of human intelligence and is required to ground significance. [126] [127] If this theory is correct, any completely practical brain model will need to encompass more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, but it is unidentified whether this would suffice.
Philosophical viewpoint
"Strong AI" as specified in philosophy
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: An artificial intelligence system can (only) imitate it thinks and has a mind and consciousness.
The first one he called "strong" due to the fact that it makes a more powerful declaration: it assumes something unique has actually occurred to the device that exceeds those capabilities that we can evaluate. The behaviour of a "weak AI" machine would be precisely similar to a "strong AI" machine, however the latter would also have subjective mindful experience. This usage is also common in scholastic AI research and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that awareness is required for human-level AGI. Academic philosophers such as Searle do not think that holds true, and to most artificial intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it really has mind - undoubtedly, there would be no other way to tell. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have different meanings, and some elements play significant roles in science fiction and the ethics of synthetic intelligence:
Sentience (or "sensational awareness"): The ability to "feel" understandings or feelings subjectively, rather than the capability to reason about understandings. Some theorists, such as David Chalmers, utilize the term "consciousness" to refer exclusively to sensational consciousness, which is roughly comparable to life. [132] Determining why and how subjective experience develops is understood as the difficult issue of awareness. [133] Thomas Nagel described in 1974 that it "seems like" something to be conscious. If we are not mindful, then it doesn't feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually attained life, though this claim was commonly challenged by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a different person, particularly to be knowingly knowledgeable about one's own ideas. This is opposed to just being the "subject of one's believed"-an operating system or debugger is able to be "aware of itself" (that is, to represent itself in the very same way it represents everything else)-however this is not what individuals usually suggest when they use the term "self-awareness". [g]
These traits have a moral dimension. AI sentience would provide increase to issues of well-being and legal protection, likewise to animals. [136] Other aspects of consciousness related to cognitive abilities are also relevant to the principle of AI rights. [137] Figuring out how to incorporate advanced AI with existing legal and social structures is an emergent issue. [138]
Benefits
AGI might have a large range of applications. If oriented towards such objectives, AGI could assist alleviate various issues in the world such as hunger, poverty and health problems. [139]
AGI might enhance productivity and effectiveness in most jobs. For instance, in public health, AGI might accelerate medical research study, significantly against cancer. [140] It might look after the senior, [141] and equalize access to fast, top quality medical diagnostics. It might provide enjoyable, cheap and personalized education. [141] The requirement to work to subsist might end up being outdated if the wealth produced is correctly redistributed. [141] [142] This likewise raises the concern of the location of human beings in a drastically automated society.
AGI might likewise help to make rational choices, and to prepare for and prevent disasters. It could also help to reap the benefits of possibly catastrophic technologies such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's main objective is to avoid existential catastrophes such as human extinction (which could be challenging if the Vulnerable World Hypothesis ends up being real), [144] it might take measures to significantly reduce the threats [143] while lessening the impact of these measures on our quality of life.
Risks
Existential risks
AGI may represent multiple types of existential danger, which are risks that threaten "the premature termination of Earth-originating smart life or the long-term and extreme destruction of its potential for desirable future development". [145] The threat of human termination from AGI has actually been the topic of many arguments, but there is also the possibility that the advancement of AGI would lead to a permanently flawed future. Notably, it might be used to spread and maintain the set of worths of whoever establishes it. If humanity still has ethical blind spots comparable to slavery in the past, AGI might irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might assist in mass security and indoctrination, which might be utilized to produce a steady repressive around the world totalitarian regime. [147] [148] There is likewise a danger for the machines themselves. If devices that are sentient or otherwise deserving of ethical factor to consider are mass produced in the future, taking part in a civilizational path that indefinitely overlooks their welfare and interests might be an existential catastrophe. [149] [150] Considering how much AGI might enhance humankind's future and help minimize other existential risks, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI postures an existential threat for people, and that this danger requires more attention, is questionable but has been backed in 2023 by lots of public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized prevalent indifference:
So, facing possible futures of enormous benefits and threats, the experts are undoubtedly doing whatever possible to ensure the best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll get here in a few years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The prospective fate of humanity has often been compared to the fate of gorillas threatened by human activities. The contrast specifies that higher intelligence enabled humanity to dominate gorillas, which are now susceptible in methods that they might not have actually anticipated. As an outcome, the gorilla has ended up being an endangered types, not out of malice, but simply as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind which we must beware not to anthropomorphize them and interpret their intents as we would for human beings. He stated that individuals will not be "smart enough to develop super-intelligent makers, yet ridiculously silly to the point of providing it moronic goals without any safeguards". [155] On the other side, the concept of critical merging recommends that almost whatever their objectives, intelligent agents will have reasons to try to endure and acquire more power as intermediary steps to accomplishing these objectives. Which this does not need having emotions. [156]
Many scholars who are concerned about existential threat advocate for more research study into fixing the "control issue" to answer the question: what kinds of safeguards, algorithms, or architectures can programmers carry out to increase the possibility that their recursively-improving AI would continue to act in a friendly, instead of damaging, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which could result in a race to the bottom of safety precautions in order to release products before rivals), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can present existential danger likewise has critics. Skeptics usually state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other concerns associated with present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals outside of the technology industry, existing chatbots and LLMs are currently perceived as though they were AGI, causing further misconception and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some researchers believe that the interaction projects on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, provided a joint statement asserting that "Mitigating the risk of extinction from AI must be an international priority together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. labor force could have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of employees might see a minimum of 50% of their jobs affected". [166] [167] They consider office employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a better autonomy, capability to make choices, to interface with other computer tools, but also to manage robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or many people can end up miserably poor if the machine-owners effectively lobby versus wealth redistribution. Up until now, the trend seems to be towards the 2nd alternative, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will require federal governments to adopt a universal basic earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI result AI security - Research area on making AI safe and helpful AI alignment - AI conformance to the designated goal A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated device knowing - Process of automating the application of device learning BRAIN Initiative - Collaborative public-private research initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of synthetic intelligence to play various games Generative expert system - AI system efficient in generating material in action to triggers Human Brain Project - Scientific research task Intelligence amplification - Use of info technology to augment human intelligence (IA). Machine ethics - Moral behaviours of manufactured machines. Moravec's paradox. Multi-task knowing - Solving several machine finding out jobs at the same time. Neural scaling law - Statistical law in maker knowing. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of synthetic intelligence. Transfer knowing - Artificial intelligence strategy. Loebner Prize - Annual AI competition. Hardware for artificial intelligence - Hardware specifically designed and optimized for expert system. Weak expert system - Form of synthetic intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the article Chinese room. ^ AI founder John McCarthy writes: "we can not yet characterize in basic what kinds of computational procedures we wish to call smart. " [26] (For a discussion of some definitions of intelligence utilized by synthetic intelligence researchers, see approach of expert system.). ^ The Lighthill report specifically slammed AI's "grandiose goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being identified to money just "mission-oriented direct research study, rather than basic undirected research study". [56] [57] ^ As AI creator John McCarthy composes "it would be a terrific relief to the remainder of the employees in AI if the developers of brand-new basic formalisms would express their hopes in a more safeguarded type than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a standard AI textbook: "The assertion that makers could possibly act wisely (or, yewiki.org maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are actually believing (instead of replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic general intelligence benefits all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is producing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020. ^ a b c "AI timelines: What do experts in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton gives up Google and warns of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real hazard is not AI itself however the method we deploy it. ^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential risks to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that mankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI should be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of risk of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no factor to fear AI as an existential risk. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full range of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everyone to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart characteristics is based upon the subjects covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of challenging tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers avoided the term synthetic intelligence for fear of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite development in maker intelligence, artificial basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A study of expert opinion. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as clever as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A designer built an AI chatbot utilizing GPT-3 that assisted a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 jobs, from playing video games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might rival human intelligence in 'just a few years,' states CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide range of views in current research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (estimated in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense outweigh advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that humans will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate inquiry states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of synthetic intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI danger: wolvesbaneuo.com a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger positioned however synthetic intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, caution scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states big tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect capacity of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees could see their tasks impacted by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal fundamental earnings due to the fact that 'in the future, manual labor will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can resolve problems and achieve objectives in the world along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system simple adequate to be easy to understand will not be made complex enough to behave smartly, while any system complicated enough to behave smartly will be too made complex to comprehend." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from makers. For biological creatures, reason and function originate from acting on the planet and experiencing the repercussions. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who intend to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on federal governments driven by project financing contributions [from tech business] to push back.' ... Marcus information the demands that people should make from their governments and the tech companies. They consist of transparency on how AI systems work; settlement for people if their information [are] used to train LLMs (big language design) s and the right to authorization to this usage; and the ability to hold tech companies accountable for the harms they trigger by removing Section 230, imposing cash penalites, and passing more stringent item liability laws ... Marcus also suggests ... that a new, AI-specific federal company, similar to the FDA, the FCC, or the FTC, may provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... develop [ing] a professional licensing regime for engineers that would function in a comparable way to medical licenses, malpractice fits, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers likewise swore to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stumped people for decades, opensourcebridge.science exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has actually exposed that although NLP (natural-language processing) designs are capable of amazing accomplishments, their abilities are quite restricted by the quantity of context they get. This [...] might cause [difficulties] for researchers who want to use them to do things such as examine ancient languages. Sometimes, there are couple of historic records on long-gone civilizations to act as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce fake videos indistinguishable from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we suggest reasonable videos produced utilizing synthetic intelligence that in fact trick individuals, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their function better looks like that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should avoid humanizing machine-learning models utilized in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic general intelligence are stymmied by the exact same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to overlook inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require real humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared not able to reason logically and tried to count on its large database of ... realities originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful however undependable. Rules-based systems can not deal with scenarios their programmers did not anticipate. Learning systems are limited by the data on which they were trained. AI failures have already resulted in tragedy. Advanced autopilot features in vehicles, although they perform well in some situations, have driven automobiles without warning into trucks, concrete barriers, and parked automobiles. In the wrong circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is trying to control and hack an AI system, the dangers are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations but count on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.